Asymptotic Linear Bounds for the Castelnuovo-mumford Regularity
نویسندگان
چکیده
We prove asymptotic linear bounds for the Castelnuovo-Mumford regularity of certain filtrations of homogeneous ideals whose Rees algebras need not be Noetherian.
منابع مشابه
Castelnuovo-Mumford regularity of products of monomial ideals
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
متن کاملCastelnuovo-Mumford regularity of canonical and deficiency modules
We give two kinds of bounds for the Castelnuovo-Mumford regularity of the canonical module and the deficiency modules of a ring, respectively in terms of the homological degree and the Castelnuovo-Mumford regularity of the original ring.
متن کاملCastelnuovo-mumford Regularity by Approximation
The Castelnuovo-Mumford regularity of a module gives a rough measure of its complexity. We bound the regularity of a module given an approximation by modules whose regularities are known. Such approximations can arise naturally for modules constructed by inductive combinatorial means. We apply these methods to bound the regularity of ideals constructed as combinations of linear ideals and the m...
متن کامل. A C ] 9 S ep 2 00 3 CASTELNUOVO - MUMFORD REGULARITY BY APPROXIMATION
The Castelnuovo-Mumford regularity of a module gives a rough measure of its complexity. We bound the regularity of a module given a system of approximating modules whose regularities are known. Such approximations can arise naturally for modules constructed by inductive combinatorial means. We apply these methods to bound the regularity of ideals constructed as combinations of linear ideals and...
متن کامل